Theorem 1 - If two angles are right angles, then they are congruent.

Statements
Reasons

Theorem 2 - If two angles are straight angles, then they are congruent.

Theorem 4-If angles are supplementary to the same angle, then they are congruent.

Theorem 5-If \angle s are supplementary to $\cong \angle$ s, then they are \cong

Given: $\quad \angle$ VIC is supplementary to $\angle T O R$ $\angle D E L$ is supplementary to $\angle A N Y$ $\angle \mathrm{VIC} \cong \angle \mathrm{DEL}$

Prove: $\quad \angle T O R \cong \angle A N Y$

Statements

Theorem 6 - If angles are complementary to the same angle, then they are congruent.

Statements

Theorem 7-If \angle s are complementary to $\cong \angle \mathbf{s}$, then they are \cong

Given: \begin{tabular}{l}
$\angle 1$ is compl. to $\angle 3$ \\
$\angle 2$ is compl. to $\angle 4$ \\
$\angle 3 \cong \angle 4$ \\

Prove: \quad| $\angle 1 \cong \angle 2$ |
| :--- | :--- | \\

\\
Statements
\end{tabular}

Theorem 8 - If a segment is added to two \cong segments, then the sums are \cong (The Addition Property of \cong Segments - Version 1).

Given: $\quad \overline{\mathrm{AB}} \cong \overline{\mathrm{CD}}$

Prove: $\quad \overline{\mathrm{AC}} \cong \overline{\mathrm{BD}}$

Theorem 9 - If an angle is added to two \cong angles, then the sums are \cong (The Addition Property of $\cong \angle s$ - Version 1).

Given: $\quad \angle E F J \cong \angle G F H$

Prove: $\quad \angle E F H \cong \angle \mathrm{GFJ}$

Theorem 10 - If \cong segments are added to \cong segments, the resulting segments are \cong (The Addition Property of \cong Segments - Version 2).

Theorem 11 - If \cong angles are added to \cong angles, the resulting angles are \cong (The Addition Property of $\cong \angle \mathbf{s}-$ Version 2).

Given:	$\angle \mathrm{HGI} \cong \angle \mathrm{HJI}$ $\angle \mathrm{IGJ} \cong \angle \mathrm{IJG}$
Prove:	$\angle \mathrm{HGJ} \cong \angle \mathrm{HJG}$
	Statements

Theorem 12 - If an angle is subtracted from two \cong angles, then the resulting \angle s are \cong (The Subtraction Property of $\cong \angle s-$ Version 1).

Given: $\quad \angle E F H \cong \angle G F J$

Prove: $\quad \angle E F J \cong \angle G F H$

Reasons

Theorem 13-If $\cong \angle$ s are subtracted from $\cong \angle$ s the resulting $\angle \mathrm{s}$ are \cong (The Subtraction Property of $\cong \angle \mathbf{s}-$ Version 2)

Theorem 14 - If angles are \cong, their like multiples are \cong (Multiplication Property of $\cong \angle$ s).

Theorem 15 - If segments are \cong, their like divisions are \cong (Division Property of \cong Segments).
Given: $\quad \overline{A B} \cong \overline{X Y}$

Prove: $\quad \overline{\mathbf{A M}} \cong \overline{\mathbf{X N}}$

Theorem 16 - If segments (or \angle s) are \cong to the same segment (or \angle), they are \cong to each other (Transitive Property of \cong Segments or $\angle \mathrm{s}$ - Version 1).

Theorem 17 - If segments (or \angle s) are \cong to \cong segments (or $\angle s$), they are \cong to each other (Transitive Property of \cong Segments or $\angle \mathbf{s}$ - Version 2).

Theorem 18 - Vertical Angles are \cong

