

Theorem 1 - If two angles are right angles, then they are congruent.

Given:	∠ABC is a straight ∠ ∠DEF is a straight ∠	Α	В		C
Prove:	∠ ABC ≅ ∠ DEF	D		E	F
	Otatamanta				Province
	Statements				Reasons

Theorem 2 - If two angles are straight angles, then they are congruent.

Theorem 4 - If angles are supplementary to the same angle, then they are congruent.

Given: ∠A is supp. to ∠X ∠B is supp. to ∠X

Prove: $\angle A \cong \angle B$

Statements

Reasons

Given:	∠VIC is supplementary to ∠TOR ∠DEL is supplementary to ∠ANY ∠VIC ≅∠DEL	
Prove:	∠TOR ≅ ∠ANY	
	Statements	Reasons

Theorem 5 - If \angle s are supplementary to $\cong \angle$ s, then they are \cong

Theorem 6 - If angles are complementary to the same angle, then they are congruent.

Given: $\angle A$ is compl. to $\angle X$ $\angle B$ is compl. to $\angle X$

Prove: $\angle A \cong \angle B$

Statements

Reasons

Theorem 7 - If $\[cases]$ s are complementary to $\[cases] \[cases] \[cases] \[cases]$ s, then they are $\[cases]$

Given:	$\overline{AB} \cong \overline{CD}$	Α	B	C.	D
Prove:	AC ≅ BD				
	Statements			Reasons	

Theorem 9 - If an angle is added to two \cong angles, then the sums are \cong (The Addition Property of $\cong \angle s$ - Version 1).

Given:	∠EFJ ≅ ∠GFH	EJJ
Prove:	∠EFH ≅ ∠GFJ	F F G

Statements Reasons

Theorem 10 - If \cong segments are added to \cong segments, the resulting segments are \cong (The Addition Property of \cong Segments - Version 2).

Theorem 12 - If an angle is subtracted from two \cong angles, then the resulting \angle s are \cong (The Subtraction Property of $\cong \angle$ s - Version 1).

Given: ∠EFH ≅ ∠GFJ

Prove: ∠**EFJ** ≅ ∠**GFH**

Statements

Reasons

Theorem 13 - If $\cong \angle s$ are subtracted from $\cong \angle s$ the resulting $\angle s$ are \cong (The Subtraction Property of $\cong \angle s$ - Version 2)

Theorem 14 - If angles are \cong , their like multiples are \cong (Multiplication Property of $\cong \angle$ s).

	AB ≅ XY M & N are midpoints	Α	M	В
Prove:	<mark>AM</mark> ≅ XN	-		
		x	Ň	Ŷ
	Statements		Reas	ons

Theorem 15 - If segments are \approx , their like divisions are \approx (Division Property of \approx Segments).

Theorem 16 - If segments (or \angle s) are \cong to the same segment (or \angle), they are \cong to each other (Transitive Property of \cong Segments or \angle s - Version 1).

-

Given:	∠A ≅ ∠B ∠A ≅ ∠C		7	R	
Prove:	∠ B ≅ ∠ C	A	B	¢	
	Statements			Reasons	
			1		

Theorem 17 - If segments (or \angle s) are \cong to \cong segments (or \angle s), they are \cong to each other (Transitive Property of \cong Segments or \angle s - Version 2).

Theorem 18 - Vertical Angles are ≅

